海流

風吹過海面時會在空氣和海面交界面上產生摩擦力,這摩擦力除了會形成海浪外同時也會導致表層海水隨著風吹的相同方向流動。儘管地球上不同地方風向多變,但是一個地方的風向總是大體維持在一個方向上,這樣海洋流向較為穩定的表層洋流就可以形成了。通常在中緯度地區以西風為主,而在赤道地區則以東風為主。當海水以這種方式被移動,其他海水就會流動到這些被吹走的海水原來的位置上以填補空缺,以此形成了一種被稱為「大洋表層環流系統」的海洋表層洋流循環運動系統。

地球上目前主要有五個大洋表層環流系統:兩個在太平洋上(北太平洋環流和南太平洋環流)、兩個在大西洋上(北大西洋環流和南大西洋環流)以及一個在印度洋上(印度洋環流)。 這些洋流的流向同時受著大陸海岸地形、風向以及科里奧利力的影響,如在科里奧利力作用下,北半球的表層洋流多呈現順時針流向,而南半球的表層洋流多呈現逆時針流向,目前這些洋流遵循它們各自的流動方向流動已上千年。

從低緯度地區流向高緯度的洋流水溫通常較暖,稱之為暖流;反之從高緯度地區流向低緯度的洋流水溫同常較冷,稱之為寒流。這些暖流和寒流影響著地球的氣候,寒流使低緯度地區降溫而暖流使高緯度地區升溫。全球氣候和天氣的極大程度上受著海洋的影響,因此在對全球氣候建模時需要運用到海洋環流模型以及其他一些主要構件的模型——如大氣模型、地表模型、氣膠模型及大海冰層模型等。海洋模型的研究主要是運用物理學、地球物理學以及流體力學去描述液體的大規模流動規律(如海洋洋流)。

地球海表洋流圖
海表洋流:紅色——暖流,藍色——寒流
表層洋流只對海洋表面上層幾百米的海水有影響,但是在海洋深處也存在著海水的大規模流動,在全球海洋範圍循環流動的主要深層海洋環流是溫鹽環流(又稱輸送洋流或全球輸送帶)。但是這個環流系統的循環流動較慢,它的流動主要依靠的是海水的溫度和鹽度差導致的海水密度差所驅動。。在高緯度地區,海水被較低的氣溫降溫並且隨著結冰過程使海水的鹽度增加,這兩項因素都導致海水密度增加(值得注意的是,不像一般淡水,海水並不是在4℃時密度最大的,而是隨著溫度下降密度不斷增大直到大概-2℃的冰點)從而使海水往下流動,這些下沉的冷海水從格陵蘭附近的深海往南沿著大西洋兩岸的陸地間的深海流動。當它們流動到南極洲附近時,南極洲附近較冷、密度較高的下沉海水會加入他們一起往東流動,然後這些深層冷海水會分成兩道海底的寒流分別往北流動到印度洋及太平洋,然後這些海水會逐漸變得暖和而密度降低,從而形成上升流回到海洋表層部分會隨表面洋流回到大西洋從而形成環流,這些循環需要上千年才能完成。

簡化的北大西洋深層水流動循環圖,藍色的線表示海底的寒流,紅色的線代表海面的暖流。
除了環流,在特定情況下還會出現一些臨時性的海流。當海浪以一定角度到達岸邊時,會產生一種與海岸線平行流動的沿岸流,這時海水會沿著海浪方向(與海岸線形成一定角度)涌升上海灘,然後因為重力作用會以沿著海灘斜面(通常與海岸線接近垂直)倒流到大海中,從而造成沉積物(泥土、淤泥、砂石和木屑等)以與海岸線形成的一定角度地沿海灘運輸。衝上海岸的破碎波浪越大則形成海灘越長,海浪的方向越斜(海浪浪峰線與海岸線形成的角度越大)則形成的沿岸流越強,這些海流會使大量沉積物移動從而形成沙咀、使沙灘消失或者水道淤積[。

另一種臨時性的海流是離岸流,海水隨著海浪涌到岸邊使海水堆積,而又因為海底地形作用使這些堆積的海水沿著海床中一條地勢較低的通道回流到大海中時產生的,這種海流有可能會發生在沙洲或者人造設施(如防波堤)中間的缺口上。這些強勢的海流在不同的地方可以在不同的潮汐狀態時形成,其速度可以達到1公尺每秒(3.3英尺每秒)從而可以將泳客快速帶離海岸邊,往外海飄流。

還有當風將表層海水吹走使其遠離海岸引起近岸下層海水上升以填補其空缺,這時就會形成臨時上升流,這些下層較冷的海水通常富含營養物質可以使浮游植物繁榮生長提高海洋生態的生長能力。同理,當風將表層海水吹走使其遠離海岸時在遠離海岸處則形成下降流